Prescribed Fixed-Time Adaptive Neural Control for Manipulators with Uncertain Dynamics and Actuator Failures

Author:

Lai Guanyu1,Zhou Sheng1,Yang Weijun2ORCID,Wang Xiaodong2,Wang Fang3

Affiliation:

1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China

2. School of Mechanical and Electrical Engineering, Guangzhou City Polytechnic, Guangzhou 510405, China

3. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

In this paper, a fixed-time adaptive neural control scheme is proposed to solve the prescribed tracking problem of robot manipulators in the presence of uncertain dynamics, and stuck-type actuator failures which are unknown in time, pattern, and values. Technically, the combination of neural networks and adaptive control is used to handle the uncertainties in system dynamics, an adaptive compensation mechanism is designed to accommodate the failures occurring in actuators, and also a systematic design procedure based on the prescribed performance bounds is presented to establish the conditional inequality for ensuring fixed-time stability. With our scheme, it can be proved rigorously that the tracking errors in joint space can always be kept within the prescribed bounds, and converge to a small region of zero in a bounded settling time, in addition to the closed-loop signal boundedness. The proposed scheme is validated through simulations.

Funder

Tertiary Education Scientific research project of Guangzhou Municipal Education Bureau

Guangzhou Higher Education Teaching Quality and teaching construction reform project

Special projects in key fields of colleges and universities in Guangdong Province

National Natural Science Foundation of China

Guangzhou Municipal Science and Technology Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3