Early Identification of Risk Factors in Non-Alcoholic Fatty Liver Disease (NAFLD) Using Machine Learning

Author:

Guarneros-Nolasco Luis Rolando1ORCID,Alor-Hernández Giner2ORCID,Prieto-Avalos Guillermo3ORCID,Sánchez-Cervantes José Luis4ORCID

Affiliation:

1. Tecnologías de la Información y Comunicación Área Desarrollo de Software, Universidad Tecnológica del Centro de Veracruz, Av. Universidad No. 350, Carretera Federal Cuitláhuac-La Tinaja, Loc. Dos Caminos, Cuitláhuac C.P. 94910, Veracruz, Mexico

2. Tecnológico Nacional de México Campus Orizaba, Av. Oriente 9 No. 852 Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, Mexico

3. Departamento de Ingeniería Eléctrica—Electrónica, Tecnológico Nacional de México Campus Mexicali, Av. Instituto Tecnológico S/N, Col. Plutarco Elías Calles, Mexicali C.P. 21376, Baja California, Mexico

4. CONACYT-Instituto Tecnológico de Orizaba, Av. Oriente 9 No. 852 Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, Mexico

Abstract

Liver diseases are a widespread and severe health concern, affecting millions worldwide. Non-alcoholic fatty liver disease (NAFLD) alone affects one-third of the global population, with some Latin American countries seeing rates exceeding 50%. This alarming trend has prompted researchers to explore new methods for identifying those at risk. One promising approach is using Machine Learning Algorithms (MLAs), which can help predict critical factors contributing to liver disease development. Our study examined nine different MLAs across four datasets to determine their effectiveness in predicting this condition. We analyzed each algorithm’s performance using five important metrics: accuracy, precision, recall, f1-score, and roc_auc. Our results showed that these algorithms were highly effective when used individually and as part of an ensemble modeling technique such as bagging or boosting. We identified alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and albumin as the top four attributes most strongly associated with non-alcoholic fatty liver disease risk across all datasets. Gamma-glutamyl transpeptidase (GGT), hemoglobin, age, and prothrombin time also played significant roles. In conclusion, this research provides valuable insights into how we can better detect and prevent non-alcoholic fatty liver diseases by leveraging advanced machine learning techniques. As such, it represents an exciting opportunity for healthcare professionals seeking more accurate diagnostic tools while improving patient outcomes globally.

Funder

Council for Scientific Research and Technological Development in Veracruz

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference67 articles.

1. INEGI (2023, June 27). INEGI Instituto Nacional de Estadística, Geografía e Informática. Características de las Defunciones Registradas en México Durante Enero a Agosto de 2020. Available online: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2021/EstSociodemo/DefuncionesRegistradas2020_Pnles.pdf.

2. Artificial intelligence in liver disease;Lee;J. Gastroenterol. Hepatol.,2021

3. Non-alcoholic Fatty Liver and Liver Fibrosis Predictive Analytics: Risk Prediction and Machine Learning Techniques for Improved Preventive Medicine;Goldman;J. Med. Syst.,2021

4. Non-alcoholic fatty liver disease and lifestyle modifications, focusing on physical activity;Kwak;Korean J. Intern. Med.,2018

5. Biochemical Markers the Road Map for the Diagnosis of Nonalcoholic Fatty Liver Disease;Ahmed;Am. J. Clin. Pathol.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3