A Reliability-Based Robust Design Optimization Method for Rolling Bearing Fatigue under Cyclic Load Spectrum

Author:

E Shiyuan1,Wang Yanzhong1,Xie Bin1,Lu Fengxia2

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

2. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Reliability-based robust design methods have been widely used in the field of product design; however, they are difficult to apply to the fatigue reliability design process of rolling bearings due to the problems of determining fatigue accumulated damage caused by the internal cyclic time-varying load distribution of rolling bearings and the computational cost of time-varying reliability. Therefore, a reliability-based robust design method for rolling bearing fatigue failure is proposed, which derives the formula for fatigue accumulated damage of a rolling bearing under cyclic load spectrum and significantly reduces the computational cost of rolling bearing time-varying reliability compared with existing methods. First, the state response of a rolling bearing under random design parameters is obtained by finite element simulation. Then, the adaptive kriging method is used to characterize the correlation between the random parameters and the state response. The Miner fatigue cumulative damage theory is improved and the rolling bearing fatigue time-varying equation of state under cyclic load spectrum is derived. Subsequently, a fatigue time-varying reliability model based on an improved fourth-order moment method is developed, and a reliability robust optimization design method is proposed. Finally, a rolling bearing example is presented to demonstrate that the method achieves time-varying fatigue reliability design under cyclic load spectrum and effectively improves the reliability and robustness of the product design.

Funder

National Key Research and Development Program of China

National Key Laboratory of Science and Technology on Helicopter Transmission

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3