SOS Approach for Practical Stabilization of Tempered Fractional-Order Power System

Author:

Gassara Hamdi1,Kharrat Dhouha2,Ben Makhlouf Abdellatif3ORCID,Mchiri Lassaad4,Rhaima Mohamed5ORCID

Affiliation:

1. Laboratory of Sciences and Technich of Automatic Control and Computer Engineering, National School of Engineering of Sfax, University of Sfax, PB 1173, Sfax 3038, Tunisia

2. Modeling, Information, and Systems Laboratory, University of Picardie Jules Verne, UFR of Sciences, 33 Rue St Leu, 80000 Amiens, France

3. Department of Mathematics, Faculty of Sciences, Sfax University, BP 1171, Sfax 3038, Tunisia

4. ENSIIE, University of Evry-Val-d’Essonne, 1 Square de la Résistance, 91025 Évry-Courcouronnes, CEDEX, France

5. Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Fractional systems have been widely utilized in various fields, such as mathematics, physics and finance, providing a versatile framework for precise measurements and calculations involving partial quantities. This paper aims to develop a novel polynomial controller for a power system (PS) with fractional-order (FO) dynamics. It begins by studying the practical stability of a general class of tempered fractional-order (TFO) nonlinear systems, with broad applicability and potential for expanding its applications. Afterward, a polynomial controller is designed to guarantee the practical stability of the PS, encompassing the standard constant controller as a specific instance. The design conditions for this controller are resolved using the sum of squares (SOS) approach, a powerful technique for guaranteeing stability and control design. To showcase the practical value of the analytical findings, simulations of the PS are conducted utilizing SOSTOOLS.

Funder

The Deputyship for Research and Innovation, ”Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3