Stability and Bifurcations in a Nutrient–Phytoplankton–Zooplankton Model with Delayed Nutrient Recycling with Gamma Distribution

Author:

Sterpu Mihaela1ORCID,Rocşoreanu Carmen2,Efrem Raluca1ORCID,Campbell Sue Ann3

Affiliation:

1. Department of Mathematics, University of Craiova, 200585 Craiova, Romania

2. Department of Statistics and Economic Informatics, University of Craiova, 200585 Craiova, Romania

3. Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

Two nutrient–phytoplankton–zooplankton (NZP) models for a closed ecosystem that incorporates a delay in nutrient recycling, obtained using the gamma distribution function with one or two degrees of freedom, are analysed. The models are described by systems of ordinary differential equations of four and five dimensions. The purpose of this study is to investigate how the mean delay of the distribution and the total nutrients affect the stability of the equilibrium solutions. Local stability theory and bifurcation theory are used to determine the long-time dynamics of the models. It is found that both models exhibit comparable qualitative dynamics. There are a maximum of three equilibrium points in each of the two models, and at most one of them is locally asymptotically stable. The change of stability from one equilibrium to another takes place through a transcritical bifurcation. In some hypotheses on the functional response, the nutrient–phytoplankton–zooplankton equilibrium loses stability via a supercritical Hopf bifurcation, causing the apparition of a stable limit cycle. The way in which the results are consistent with prior research and how they extend them is discussed. Finally, various application-related consequences of the results of the theoretical study are deduced.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3