Dynamics of Newtonian Liquids with Distinct Concentrations Due to Time-Varying Gravitational Acceleration and Triple Diffusive Convection: Weakly Non-Linear Stability of Heat and Mass Transfer

Author:

Singh Pervinder1,Gupta Vinod K.1,Animasaun Isaac Lare23ORCID,Muhammad Taseer4ORCID,Al-Mdallal Qasem M.3ORCID

Affiliation:

1. Department of Mathematics, School of Physical Sciences, DIT University, Dehradun 248009, India

2. Fluid Dynamics and Survey Research Group, Department of Mathematical Sciences, Federal University of Technology, Akure PMB 704, Nigeria

3. Department of Mathematical Sciences, United Arab Emirates University, Al Ain PMB 15551, United Arab Emirates

4. Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia

Abstract

One of the practical methods for examining the stability and dynamical behaviour of non-linear systems is weakly non-linear stability analysis. Time-varying gravitational acceleration and triple-diffusive convection play a significant role in the formation of acceleration, inducing some dynamics in the industry. With an emphasis on the natural Rayleigh–Bernard convection, more is needed on the significance of a modulated gravitational field on the heat and mass transfer due to triple convection focusing on weakly non-linear stability analysis. The Newtonian fluid layers were heated, salted and saturated from below, causing the bottom plate’s temperature and concentration to be greater than the top plate’s. In this study, the acceleration due to gravity was assumed to be time-dependent and comprised of a constant gravity term and a time-dependent gravitational oscillation. More so, the amplitude of the modulated gravitational field was considered infinitesimal. The case in which the fluid layer is infinitely expanded in the x-direction and between two concurrent plates at z=0 and z=d was considered. The asymptotic expansion technique was used to retrieve the solution of the Ginzburg–Landau differential equation (i.e., a system of non-autonomous partial differential equations) using the software MATHEMATICA 12. Decreasing the amplitude of modulation, Lewis number, Rayleigh number and frequency of modulation has no significant effect on the Nusselt number proportional to heat-transfer rates (Nu), Sherwood number proportional to mass transfer of solute 1 (Sh1) and Sherwood number proportional to mass transfer of solute 2 (Sh2) at the initial time. The crucial Rayleigh number rises in value in the presence of a third diffusive component. The third diffusive component is essential in delaying the onset of convection.

Funder

Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3