Affiliation:
1. Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 Ceské Budejovice, Czech Republic
Abstract
The article presents the predictive capabilities of a fuzzy multi-criteria evaluation system that operates on the basis of a non-fuzzy neural approach, but also one that is capable of implementing a learning paradigm and working with vague concepts. Within this context, the necessary elements of fuzzy logic are identified and the algebraic formulation of the fuzzy system is presented. It is with the help of the aforementioned that the task of predicting the short-term trend and price of the Tesla share is solved. The functioning of a fuzzy system and fuzzy neural network in the field of time series value prediction is discussed. The authors are inclined to the opinion that, despite the fact that a fuzzy neural network reacts in terms of applicability and effectiveness when solving prediction problems in relation to input data with a faster output than a fuzzy system, and is more “user friendly”, a sufficiently knowledgeable and experienced solver/expert could, by using a fuzzy system, achieve a higher speed of convergence in the learning process than a fuzzy neural network using the minimum range of input data carrying the necessary information. A fuzzy system could therefore be a possible alternative to a fuzzy neural network from the point of view of prediction.
Funder
School of Expertness and Valuation, Institute of Technology and Business in Ceske Budejovice
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献