Affiliation:
1. Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
2. Laboratory of Metrology and Energy System, University of Monastir, Monastir 5000, Tunisia
Abstract
The analysis of entropy generation provides valuable information for the design and optimization of thermal systems. Solar stills are used for water desalination and purification. Using renewable energies, they provide a sustainable solution for drinking water supply in remote areas and off-grid situations. This work focuses on the 3D numerical study of entropy generation in a two-stage solar still subjected to the natural double diffusion convection phenomenon in the presence of CNT nanoparticles. The effects of Rayleigh number, buoyancy ratio, and nanofluid concentration on thermal, solutal, and viscous irreversibilities and flow structure were studied. The results show that increasing the buoyancy ratio leads to an increase in thermal and solutal entropy generation. The results of this study also show that total entropy is minimal for positive volume force ratios, N, at a nanoparticle volume fraction of around 3%, and for negative N ratios, at a volume fraction of around 4%.
Funder
Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献