Profile Maximum Likelihood Estimation of Single-Index Spatial Dynamic Panel Data Model

Author:

Zhang Mengqi1,Tian Boping1ORCID

Affiliation:

1. Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

Abstract

In this paper, the spatial dynamic panel data (SDPD) model is extended to the single-index spatial dynamic panel data (Si-SDPD) model by introducing a nonlinear connection function to reflect the interaction between explanatory variables. The Si-SDPD model not only retains the advantages of the parametric SDPD model in dealing with spatial and temporal interaction effects and spatio-temporal dependencies, but also solves the limitations of the parametric SDPD model that may lead to missed bias. It reduces the data dimension of non-parametric models and enhances the practicability and explanatory power of parametric models. Since the parts of the model to be estimated contain unknown functions, we propose a new estimation method, a profile maximum likelihood (PML) method, to solve the problem of incidental parameters in the estimation. Under the assumption that the spatial coefficients are known, we preliminarily estimate the unknown function by carrying out local polynomial estimation, so as to transform the model into the parametric form for solving purposes. We then solve the dynamic panel parametric model via quasi-maximum likelihood (QML) estimation. We derive the asymptotic properties of profile maximum likelihood estimators (PMLEs) and find that, under certain regularity conditions, both parametric and non-parametric estimators are consistent. Monte Carlo results show that PMLEs have good finite sample performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3