Parameter Identification of Bivariate Fractal Interpolation Surfaces by Using Convex Hulls

Author:

Drakopoulos Vasileios1ORCID,Matthes Dimitrios1ORCID,Sgourdos Dimitrios2ORCID,Vijender Nallapu3ORCID

Affiliation:

1. Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece

2. Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece

3. Department of Mathematics, Visvesvaraya National Institute of Technology Nagpur, Nagpur 440006, India

Abstract

The scope of this article is to identify the parameters of bivariate fractal interpolation surfaces by using convex hulls as bounding volumes of appropriately chosen data points so that the resulting fractal (graph of) function provides a closer fit, with respect to some metric, to the original data points. In this way, when the parameters are appropriately chosen, one can approximate the shape of every rough surface. To achieve this, we first find the convex hull of each subset of data points in every subdomain of the original lattice, calculate the volume of each convex polyhedron and find the pairwise intersections between two convex polyhedra, i.e., the convex hull of the subdomain and the transformed one within this subdomain. Then, based on the proposed methodology for parameter identification, we minimise the symmetric difference between bounding volumes of an appropriately selected set of points. A methodology for constructing continuous fractal interpolation surfaces by using iterated function systems is also presented.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference17 articles.

1. Fractal functions and interpolation;Barnsley;Constr. Approx.,1986

2. Barnsley, M.F. (2012). Fractals Everywhere, Dover Publications, Inc.. [3rd ed.].

3. Fractal surfaces;Massopust;J. Math. Anal. Appl.,1990

4. Fractal interpolation surfaces and a related 2-D multiresolution analysis;Geronimo;J. Math. Anal. Appl.,1993

5. Construction and application of fractal interpolation surfaces;Zhao;Vis. Comput.,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3