TransNeural: An Enhanced-Transformer-Based Performance Pre-Validation Model for Split Learning Tasks

Author:

Liu Guangyi1,Kang Mancong2,Zhu Yanhong13,Zheng Qingbi14,Zhu Maosheng5,Li Na14

Affiliation:

1. China Mobile Research Institute, Beijing 100053, China

2. School of Communications and Information Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100091, China

4. ZGC Institute of Ubiquitous-X Innovation and Application, Beijing 100191, China

5. China Mobile (Suzhou) Software Technology Co., Ltd., Suzhou 215163, China

Abstract

While digital twin networks (DTNs) can potentially estimate network strategy performance in pre-validation environments, they are still in their infancy for split learning (SL) tasks, facing challenges like unknown non-i.i.d. data distributions, inaccurate channel states, and misreported resource availability across devices. To address these challenges, this paper proposes a TransNeural algorithm for DTN pre-validation environment to estimate SL latency and convergence. First, the TransNeural algorithm integrates transformers to efficiently model data similarities between different devices, considering different data distributions and device participate sequence greatly influence SL training convergence. Second, it leverages neural network to automatically establish the complex relationships between SL latency and convergence with data distributions, wireless and computing resources, dataset sizes, and training iterations. Deviations in user reports are also accounted for in the estimation process. Simulations show that the TransNeural algorithm improves latency estimation accuracy by 9.3% and convergence estimation accuracy by 22.4% compared to traditional equation-based methods.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3