Dry Climate Filters Gymnosperms but Not Angiosperms through Seed Mass

Author:

Qi Yang1,Liu Hongyan1ORCID,Xu Chongyang2,Dai Jingyu1,Han Biao3ORCID

Affiliation:

1. College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing 100871, China

2. Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel

3. Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250014, China

Abstract

In the context of climate change in recent years, the fate of woody plant seed has an important impact on forest regeneration. Seed mass is an important reproductive strategy of plants. There are huge differences between gymnosperms (mainly conifers) and angiosperms (flowering plants) in terms of reproduction and hydraulic strategies; however, little is known about changes in seed mass along climate aridity gradients between taxonomical groups such as gymnosperms and angiosperms, which limit our understanding on the fate of woody plants under warming-induced climate drying. We collected seed mass data from a total of 2575 woody plant individuals, including 145 species of gymnosperms and 1487 species of angiosperms, across different climatic zones in China. We mapped the distribution pattern of gymnosperm and angiosperm seed mass in China, with angiosperms being maximal near the 400 mm iso-precipitation line. Our phylogenetic analysis results show that seed mass exhibited significant phylogenic signals (p < 0.001) and was also strongly influenced by functional traits (growth type, fruit type, and dispersal mode). The results of linear regression and hierarchical partitioning analysis showed a stronger correlation between gymnosperm seed mass and environmental factors, and a higher independent aridity index effect on gymnosperm seed mass than angiosperm seed mass. The different patterns of seed mass along a climate aridity gradient between gymnosperms and angiosperms may point to different future fates for these two taxonomic groups, while the higher sensitivity of gymnosperm seed mass to environmental conditions may reduce their reproductive rate under the background of climate warming and drying.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference62 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3