Coordinated Decision Control of Lane-Change and Car-Following for Intelligent Vehicle Based on Time Series Prediction and Deep Reinforcement Learning

Author:

Zhang Kun1,Pu Tonglin1,Zhang Qianxi1,Nie Zhigen1

Affiliation:

1. Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Adaptive cruise control and autonomous lane-change systems represent pivotal advancements in intelligent vehicle technology. To enhance the operational efficiency of intelligent vehicles in combined lane-change and car-following scenarios, we propose a coordinated decision control model based on hierarchical time series prediction and deep reinforcement learning under the influence of multiple surrounding vehicles. Firstly, we analyze the lane-change behavior and establish boundary conditions for safe lane-change, and divide the lane-change trajectory planning problem into longitudinal velocity planning and lateral trajectory planning. LSTM network is introduced to predict the driving states of surrounding vehicles in multi-step time series, combining D3QN algorithm to make decisions on lane-change behavior. Secondly, based on the following state between the ego vehicle and the leader vehicle in the initial lane, as well as the relationship between the initial distance and the expected distance with the leader vehicle in the target lane, with the primary objective of maximizing driving efficiency, longitudinal velocity is planned based on driving conditions recognition. The lateral trajectory and conditions recognition are then planned using the GA-LSTM-BP algorithm. In contrast to conventional adaptive cruise control systems, the DDPG algorithm serves as the lower-level control model for car-following, enabling continuous velocity control. The proposed model is subsequently simulated and validated using the NGSIM dataset and a lane-change scenarios dataset. The results demonstrate that the algorithm facilitates intelligent vehicle lane-change and car-following coordinated control while ensuring safety and stability during lane-changes. Comparative analysis with other decision control models reveals a notable 17.58% increase in driving velocity, underscoring the algorithm’s effectiveness in improving driving efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3