Multivariate Modeling of Mechanical Properties for Hot Runner Molded Bioplastics and a Recycled Polypropylene Blend

Author:

Kazmer David O.ORCID,Masato DavideORCID,Piccolo LeonardoORCID,Puleo Kyle,Krantz Joshua,Venoor Varun,Colon Austin,Limkaichong Justin,Dewar Neil,Babin Denis,Sayer Cheryl

Abstract

Four sustainable materials including a recycled polypropylene blend, polybutylene adipate terephthalate, and two grades of polylactic acid are compared to a reference isotactic polypropylene. Tensile specimens were produced using a two-cavity, hot runner mold with fully automatic cycles per standard industrial practices to investigate the effect of melt temperature, injection velocity, cycle time, and screw speed on the mechanical properties. Multiple regression and principal component analyses were performed for each of the materials. Results indicated that all the materials were readily processed using a hot runner, and the mechanical properties exhibited minimal variation. To the extent that losses in mechanical properties were observed, the results indicated that the losses were correlated with thermal degradation as independently characterized by thermal gravimetric analysis. Such losses can be minimized by reducing melt temperature and cycle time, leading to a reduction of the environmental impact of injection molding processes.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3