Removal of >10 µm Microplastic Particles from Treated Wastewater by a Disc Filter

Author:

Simon Márta,Vianello AlviseORCID,Vollertsen JesORCID

Abstract

In this paper, we evaluate the performance of a disc filter that retains microplastic (MP) particles from treated wastewater. A focal plane array-based Fourier transform infrared imaging technique enabled MP quantification and an in-house-built software (MPhunter) facilitated automatic analysis of the obtained infrared spectra. The disc filter retained 89.7% of particles, and 75.6% of their mass. This removal efficiency is comparable to removal rates reported by previous studies. However, the presence of an unexpectedly large number of MP particles whose size substantially exceeded the pore size of the disc filter suggests that particles could either bypass or pass through the filter mesh, somewhat diminishing the performance of the filter. The concentration of MPs in the effluent was 3 MP/L, corresponding to an estimated mass concentration of 0.31 µg/L. The annual MP discharge from the studied WWTP after the disc filter was estimated to be 1.1 kg in 2017. It was hence not a significant contributor to MP emissions in Denmark. Although the operation of the disc filter seems to have been disturbed, it nonetheless achieved a high MP removal rate. Therefore, we conclude that it is a suitable technology to decrease the concentration of discharged MPs in wastewater effluents.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3