Abstract
Food standards and quality control are important means to ensure public health. In the last decade, melamine has become a rather notorious example of food adulteration: Spiking products with low-cost melamine in order to feign high amino acid content exploits the lack in specificity of the established Kjeldahl method for determining organic nitrogen. This work discusses the responses of a sensor based on quartz crystal microbalances (QCM) coated with molecularly imprinted polymers (MIP) to detect melamine in real life matrices both in a selective and a sensitive manner. Experiments in pure milk revealed no significant sensor responses. However, sensor response increased to a frequency change of −30Hz after diluting the matrix ten times. Systematic evaluation of this effect by experiments in melamine solutions containing bovine serum albumin (BSA) and casein revealed that proteins noticeably influence sensor results. The signal of melamine in water (1600 mg/L) decreases to half of its initial value, if either 1% BSA or casein are present. Higher protein concentrations decrease sensor responses even further. This suggests significant interaction between the analyte and proteins in general. Follow-up experiments revealed that centrifugation of tagged serum samples results in a significant loss of sensor response, thereby further confirming the suspected interaction between protein and melamine.
Funder
Seventh Framework Programme
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献