ERCP: Energy-Efficient and Reliable-Aware Clustering Protocol for Wireless Sensor Networks

Author:

El-Fouly Fatma H.,Khedr Ahmed Y.ORCID,Sharif Md. HaidarORCID,Alreshidi Eissa Jaber,Yadav Kusum,Kusetogullari HuseyinORCID,Ramadan Rabie A.ORCID

Abstract

Wireless Sensor Networks (WSNs) have been around for over a decade and have been used in many important applications. Energy and reliability are two of the major problems with these kinds of applications. Reliable data delivery is an important issue in WSNs because it is a key part of how well data are sent. At the same time, energy consumption in battery-based sensors is another challenge. Therefore, efficient clustering and routing are techniques that can be used to save sensors energy and guarantee reliable message delivery. With this in mind, this paper develops an energy-efficient and reliable clustering protocol (ERCP) for WSNs. First, an efficient clustering technique is proposed for sensor nodes’ energy savings considering different clustering parameters, including the link quality metric, the energy, the distance to neighbors, the distance to the sink node, and the cluster load metric. The proposed routing protocol works based on the concept of a reliable inter-cluster routing technique that saves energy. The routing decisions are made based on different parameters, such as the energy balance metric, the distance to the sink node, and the wireless link quality. Many experiments and analyses are examined to determine how well the ERCP performs. The experiment results showed that the ECRP protocol performs much better than some of the recent algorithms in both homogeneous and heterogeneous networks.

Funder

University of Ha’il

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3