A Reliable U-trough Runoff Collection Method for Quantifying the Migration Loads of Nutrients at Different Soil Layers under Natural Rainfall

Author:

Wang Yi,Ni Chengsheng,Wang Sheng,Xie Deti,Ni JiupaiORCID

Abstract

Long-term quantification of the migration loads of subsurface runoff (SSR) and its collateral soil nutrients among different soil layers are still restricted by the runoff collection method. This study tested the reliability of the U-trough collection methods (UCM), compared with the seepage plate collection method (SPM), in monitoring the runoff, sediment and nutrient migration loads from different soil layers (L1: 0–20 cm depth; L2: 20–40 cm depth; L3: 40–60 cm depth) for two calendar years under natural rainfall events. The results suggested that the U-trough could collect nearly 10 times the SSR sample volume of the seepage plate and keep the sampling probability more than 95% at each soil layer. The annual SSR flux from L1 to L3 was 403.4 mm, 271.9 mm, and 237.4 mm under the UCM, 14.35%, 10.56%, and 8.41% lower than those under the SPM, respectively. The annual net migration loads of sediment, TN, and TP from the L1 layer under the UCM were 49.562 t/km2, 19.113 t/km2 and 0.291 t/km2, and 86.62%, 41.21% and 81.78% of them were intercepted by the subsoil layers (L2 and L3), respectively. While their migration loads under the SPM were 48.708 t/km2, 22.342 t/km2 and 0.291 t/km2, and 88.24%, 53.06% and 80.42% of them were intercepted, respectively. Under both methods, the average leached total n (TN), total p (TP) concentrations per rainfall event and their annual migrated loads at each soil layer showed no significant difference. In conclusion, the UCM was a reliable quantitative method for subsurface runoff, sediment, and soil nutrient migration loads from diverse soil layers of purple soil sloping cultivated lands. Further studies are needed to testify the availability in other lands.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Special Social Livelihood Key R & D Project of Chongqing

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3