MeV, GeV and TeV Neutrinos from Binary-Driven Hypernovae

Author:

Campion S.12,Uribe-Suárez J. D.34ORCID,Melon Fuksman J. D.5,Rueda J. A.36789

Affiliation:

1. Dipartimento di Fisica, Sapienza Università di Roma, P. le Aldo Moro 2, I-00185 Rome, Italy

2. Istituto Nazionale di Fisica Nucleare, Sezione di Roma, P. le Aldo Moro 2, I-00185 Rome, Italy

3. ICRANet, Piazza della Repubblica 10, I-65122 Pescara, Italy

4. Facultad de Ciencias Básicas, Universidad Santiago de Cali, Campus Pampalinda, Calle 5 No. 6200, Santiago de Cali 760035, Colombia

5. Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany

6. ICRA, Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Roma, Italy

7. ICRANet-Ferrara, Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara, Italy

8. Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara, Italy

9. INAF, Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Rome, Italy

Abstract

We analyze neutrino emission channels in energetic (≳1052 erg) long gamma-ray bursts within the binary-driven hypernova model. The binary-driven hypernova progenitor is a binary system composed of a carbon-oxygen star and a neutron star (NS) companion. The gravitational collapse leads to a type Ic supernova (SN) explosion and triggers an accretion process onto the NS. For orbital periods of a few minutes, the NS reaches the critical mass and forms a black hole (BH). Two physical situations produce MeV neutrinos. First, during the accretion, the NS surface emits neutrino–antineutrino pairs by thermal production. We calculate the properties of such a neutrino emission, including flavor evolution. Second, if the angular momentum of the SN ejecta is high enough, an accretion disk might form around the BH. The disk’s high density and temperature are ideal for MeV-neutrino production. We estimate the flavor evolution of electron and non-electron neutrinos and find that neutrino oscillation inside the disk leads to flavor equipartition. This effect reduces (compared to assuming frozen flavor content) the energy deposition rate of neutrino–antineutrino annihilation into electron–positron (e+e−) pairs in the BH vicinity. We then analyze the production of GeV-TeV neutrinos around the newborn black hole. The magnetic field surrounding the BH interacts with the BH gravitomagnetic field producing an electric field that leads to spontaneous e+e− pairs by vacuum breakdown. The e+e− plasma self-accelerates due to its internal pressure and engulfs protons during the expansion. The hadronic interaction of the protons in the expanding plasma with the ambient protons leads to neutrino emission via the decay chain of π-meson and μ-lepton, around and far from the black hole, along different directions. These neutrinos have energies in the GeV-TeV regime, and we calculate their spectrum and luminosity. We also outline the detection probability by some current and future neutrino detectors.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3