Analytical Investigation of the Heat Transfer Effects of Non-Newtonian Hybrid Nanofluid in MHD Flow Past an Upright Plate Using the Caputo Fractional Order Derivative

Author:

Lisha N. M.1,Vijayakumar A. G.1ORCID

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India

Abstract

The objective of this paper is to examine the augmentation of the heat transfer rate utilizing graphene (Gr) and multi-walled carbon nanotubes (MWCNTs) as nanoparticles, and water as a host fluid in magnetohydrodynamics (MHD) flow through an upright plate using Caputo fractional derivatives with a Brinkman model on the convective Casson hybrid nanofluid flow. The performance of hybrid nanofluids is examined with various shapes of nanoparticles. The Caputo fractional derivative is utilized to describe the governing fractional partial differential equations with initial and boundary conditions on the flow model. Exact solutions are obtained for flow transport, temperature distribution besides that heat transfer rate and friction drag in terms of Mittag-Leffler function by using Fourier sine and Laplace techniques as hybrid methods. Further, we provided the limiting case solutions for classic partial differential equations on obtained governing fluid flow models. The influence of various physical parameters with different fractional orders are investigated on hybrid nanofluid’s fractional momentum and energy by plotting velocity and energy curves. Few of the findings suggest that fractional parameters have significant effect on flow parameters and that blade-shaped nanoparticles have a high heat transfer rate. The graphical results reveal that the Grashof number shows a symmetry effect in the case of cooling and heating the plate. Furthermore, the performance of hybrid nanofluid is considerably more effective with the Caputo-fractional derivatives rather than in the classic derivative approach.

Funder

Vellore Institute of Technology management

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference45 articles.

1. Maxwell, J.C. (1873). A Treatise on Electricity and Magnetism, Clarendon Press.

2. Choi, S.U., and Eastman, J.A. (1995). Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne National Lab. (ANL).

3. Magnetic nanofluid applications in electrical engineering;Morega;IEEE Trans. Magn.,2013

4. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: Geometric study;Khodabandeh;Renew. Energy,2018

5. Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field;Bahiraei;Energy Convers. Manag.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3