Oscillation of Emden–Fowler-Type Differential Equations with Non-Canonical Operators and Mixed Neutral Terms

Author:

Marappan Sathish Kumar1ORCID,Almutairi Alanoud2ORCID,Iambor Loredana Florentina3ORCID,Bazighifan Omar4ORCID

Affiliation:

1. Department of Mathematics, Paavai Engineering College (Autonomous), Namakkal 637 018, Tamilnadu, India

2. Department of Mathematics, Faculty of Science, University of Hafr Al Batin, P.O. Box 1803, Hafar Al Batin 31991, Saudi Arabia

3. Department of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, Romania

4. Section of Mathematics, International Telematic University Uninettuno, CorsoVittorio Emanuele II, 39, 00186 Roma, Italy

Abstract

The study of the symmetric properties of differential equations is essential for identifying effective methods for solving them. In this paper, we examine the oscillatory behavior of solutions of Emden–Fowler-type mixed non-linear neutral differential equations with both canonical and non-canonical operators. By utilizing integral conditions and the integral averaging method, we present new sufficient conditions to ensure that all solutions are oscillatory. Our results enhance and extend previous findings in the literature and are illustrated with suitable examples to demonstrate their effectiveness.

Funder

University of Oradea

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference32 articles.

1. Further studies of Emden’s and similar differential equations;Fowler;Q. J. Math.,1931

2. The generalized Emden–Fowler equation;Berkovich;Symmetry Nonlinear Math. Phys.,1997

3. On the generalized Emden–Fowler equation;Wong;Siam Rev.,1975

4. Hale, J.K. (1953). Theory of Functional Differential Equations, Springer.

5. Agarwal, R.P., Bohner, M., and Li, W.T. (2004). Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker. In Pure and Applied Mathematics.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3