Equivalent Conditions of the Reverse Hardy-Type Integral Inequalities

Author:

Rassias Michael Th.123,Yang Bicheng4,Raigorodskii Andrei2567

Affiliation:

1. Department of Mathematics and Engineering Sciences, Hellenic Military Academy, 16673 Vari Attikis, Greece

2. Moscow Institute of Physics and Technology, Institutskiy per, d. 9, Dolgoprudny 141700, Russia

3. Institute for Advanced Study, Program in Interdisciplinary Studies, 1 Einstein Dr, Princeton, NJ 08540, USA

4. Department of Mathematics, Guangdong University of Education, Guangzhou 510303, China

5. The Department of Statistics and Random Processes of the Mechanics and Mathematics Faculty of Lomonosov, Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia

6. Institute of Mathematics and Computer Science, Buryat State University, 24a Smolin St., Ulan-Ude 670000, Russia

7. Caucasus Mathematical Center, Adyghe State University, ul. Pervomayskaya, 208, Maykop 385000, Russia

Abstract

Hardy-type integral inequalities play a prominent role in the study of analytic inequalities, which are essential in mathematical analysis and its various applications, such as in the study of symmetry and asymmetry phenomena. In this paper, employing methods of real analysis and using weight functions, we investigate some equivalent conditions of two kinds of reverse Hardy-type integral inequalities with a particular non-homogeneous kernel. A few equivalent conditions of two kinds of reverse Hardy-type integral inequalities with a particular homogeneous kernel are deduced in the form of applications.

Funder

the National Natural Science Foundation

the Characteristic innovation project of Guangdong Provincial Colleges and universities in 2020

the grant supporting leading scientific schools of Russia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Note on a theorem of Hilbert concerning series of positive terms;Hardy;Proc. Lond. Math. Soc.,1925

2. Bernerkungen sur Theorie der beschrankten Billnearformen mit unendlich vielen Veranderlichen;Schur;J. Math.,1911

3. Hardy, G.H., Littlewood, J.E., and Pólya, G. (1934). Inequalities, Cambridge University Press.

4. Mitrinović, D.S., Pecaric, J.E., and Fink, A.M. (1991). Inequalities Involving Functions and Their Integrals and Deivatives, Kluwer Academic.

5. On Hilbert’s integral inequality;Yang;J. Math. Anal. Appl.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3