Computational Analysis for Fréchet Parameters of Life from Generalized Type-II Progressive Hybrid Censored Data with Applications in Physics and Engineering

Author:

Alotaibi Refah1ORCID,Rezk Hoda2ORCID,Elshahhat Ahmed3ORCID

Affiliation:

1. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Statistics, Al-Azhar University, Cairo 11884, Egypt

3. Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt

Abstract

Generalized progressive hybrid censored procedures are created to reduce test time and expenses. This paper investigates the issue of estimating the model parameters, reliability, and hazard rate functions of the Fréchet (Fr) distribution under generalized Type-II progressive hybrid censoring by making use of the Bayesian estimation and maximum likelihood methods. The appropriate estimated confidence intervals of unknown quantities are likewise built using the frequentist estimators’ normal approximations. The Bayesian estimators are created using independent gamma conjugate priors under the symmetrical squared-error loss. The Bayesian estimators and the associated greatest posterior density intervals cannot be computed analytically since the joint likelihood function is obtained in complex form, but they may be assessed using Monte Carlo Markov chain (MCMC) techniques. Via extensive Monte Carlo simulations, the actual behavior of the proposed estimation methodologies is evaluated. Four optimality criteria are used to choose the best censoring scheme out of all the options. To demonstrate how the suggested approaches may be utilized in real scenarios, two real applications reflecting the thirty successive values of precipitation in Minneapolis–Saint Paul for the month of March as well as the number of vehicle fatalities for thirty-nine counties in South Carolina during 2012 are examined.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3