A Survey on Resource Management for Cloud Native Mobile Computing: Opportunities and Challenges

Author:

Huang Shih-Yun1,Chen Cheng-Yu2ORCID,Chen Jen-Yeu2ORCID,Chao Han-Chieh2

Affiliation:

1. Department of Computer Science, Tunghai University, Taichung 407224, Taiwan

2. Department of Electrical Engineering, National Dong Hwa University, Hualien 97401, Taiwan

Abstract

Fifth-generation mobile communication networks (5G)/Beyond 5G (B5G) can achieve higher data rates, more significant connectivity, and lower latency to provide various mobile computing service categories, of which enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable and low latency communications (URLLC) are the three extreme cases. A symmetrically balanced mechanism must be considered in advance to fit the different requirements of such a wide variety of service categories and ensure that the limited resource capacity has been properly allocated. Therefore, a new network service architecture with higher flexibility, dispatchability, and symmetrical adaptivity is demanded. The cloud native architecture that enables service providers to build and run scalable applications/services is highly favored in such a setting, while a symmetrical resource allocation is still preserved. The microservice function in the cloud native architecture can further accelerate the development of various services in a 5G/B5G mobile wireless network. In addition, each microservice part can handle a dedicated service, making overall network management easier. There have been many research and development efforts in the recent literature on topics pertinent to cloud native, such as containerized provisioning, network slicing, and automation. However, there are still some problems and challenges ahead to be addressed. Among them, optimizing resource management for the best performance is fundamentally crucial given the challenge that the resource distribution in the cloud native architecture may need more symmetry. Thus, this paper will survey cloud native mobile computing, focusing on resource management issues of network slicing and containerization.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3