Contextual Embeddings-Based Web Page Categorization Using the Fine-Tune BERT Model

Author:

Nandanwar Amit Kumar1ORCID,Choudhary Jaytrilok1

Affiliation:

1. Computer Science & Engineering Department, Maulana Azad National Institute of Technology, Bhopal 462003, India

Abstract

The World Wide Web has revolutionized the way we live, causing the number of web pages to increase exponentially. The web provides access to a tremendous amount of information, so it is difficult for internet users to locate accurate and useful information on the web. In order to categorize pages accurately based on the queries of users, methods of categorizing web pages need to be developed. The text content of web pages plays a significant role in the categorization of web pages. If a word’s position is altered within a sentence, causing a change in the interpretation of that sentence, this phenomenon is called polysemy. In web page categorization, the polysemy property causes ambiguity and is referred to as the polysemy problem. This paper proposes a fine-tuned model to solve the polysemy problem, using contextual embeddings created by the symmetry multi-head encoder layer of the Bidirectional Encoder Representations from Transformers (BERT). The effectiveness of the proposed model was evaluated by using the benchmark datasets for web page categorization, i.e., WebKB and DMOZ. Furthermore, the experiment series also fine-tuned the proposed model’s hyperparameters to achieve 96.00% and 84.00% F1-Scores, respectively, demonstrating the proposed model’s importance compared to baseline approaches based on machine learning and deep learning.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the Precision of Image Search Engines with the Psychological Intention Diagram;Electronics;2024-01-02

2. Research on the classification method of knowledge question intention for Tibetan language curriculum;ACM Multimedia Asia Workshops;2023-12-06

3. Hybrid Optimization Based BERT Model for Drug Detection in NLP;2023 IEEE 3rd Mysore Sub Section International Conference (MysuruCon);2023-12-01

4. Identifying and Classifying Fake COVID-19 Tweets using Transformer Models;2023 Intelligent Methods, Systems, and Applications (IMSA);2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3