Affiliation:
1. School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510006, China
2. CCCC Guangzhou Water Transportation Engineering Design & Research Institute Co., Ltd., Guangzhou 510290, China
3. Carbon-Water Research Station in Karst Regions of Northern Guangdong, School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510006, China
Abstract
Comprehensive vegetation surveys are crucial for species selection and layout during the restoration of degraded island ecosystems. However, due to the poor accessibility of uninhabited islands, traditional quadrat surveys are time-consuming and labor-intensive, and it is challenging to fully identify the specific species and their spatial distributions. With miniaturized sensors and strong accessibility, high spatial and temporal resolution, Unmanned Aerial Vehicles (UAVs) have been extensively implemented for vegetation surveys. By collecting UAVs multispectral images and conducting field quadrat surveys on Anyu Island, we employ four machine learning models, namely Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), Random Forest (RF) and Multiple Classifier Systems (MCS). We aim to identify the dominant species and analyze their spatial distributions according to spectral characteristics, vegetation index, topographic factors, texture features, and canopy heights. The results indicate that SVM model achieves the highest (88.55%) overall accuracy (OA) (kappa coefficient = 0.87), while MCS model does not significantly improve it as expected. Acacia confusa has the highest OA among 7 dominant species, reaching 97.67%. Besides the spectral characteristics, the inclusion of topographic factors and texture features in the SVM model can significantly improve the OA of dominant species. By contrast, the vegetation index, particularly the canopy height even reduces it. The dominant species exhibit significant zonal distributions with distance from the coastline on the Anyu Island (p < 0.001). Our study provides an effective and universal path to identify and map the dominant species and is helpful to manage and restore the degraded vegetation on uninhabited islands.
Funder
National Science Foundation of China
Enterprise Principal Project