Range-Spread Target Detection Networks Using HRRPs

Author:

Ye Yishan12ORCID,Deng Zhenmiao12,Pan Pingping3,He Wei12ORCID

Affiliation:

1. School of Electronics and Communication Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China

2. School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 510275, China

3. Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China

Abstract

Range-spread target (RST) detection is an important issue for high-resolution radar (HRR). Traditional detectors relying on manually designed detection statistics have their performance limitations. Therefore, in this work, two deep learning-based detectors are proposed for RST detection using HRRPs, i.e., an NLS detector and DFCW detector. The NLS detector leverages domain knowledge from the traditional detector, treating the input HRRP as a low-level feature vector for target detection. An interpretable NLS module is designed to perform noise reduction for the input HRRP. The DFCW detector takes advantage of the extracted high-level feature map of the input HRRP to improve detection performance. It incorporates a feature cross-weighting module for element-wise feature weighting within the feature map, considering the channel and spatial information jointly. Additionally, a nonlinear accumulation module is proposed to replace the conventional noncoherent accumulation operation in the double-HRRP detection scenario. Considering the influence of the target spread characteristic on detector performance, signal sparseness is introduced as a measure and used to assist in generating two datasets, i.e., a simulated dataset and measured dataset incorporating real target echoes. Experiments based on the two datasets are conducted to confirm the contribution of the designed modules to detector performance. The effectiveness of the two proposed detectors is verified through performance comparison with traditional and deep learning-based detectors.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Science and Technology Planning Project of Key Laboratory of Advanced IntelliSense Technology, Guangdong Science and Technology Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3