Determining Riverine Surface Roughness at Fluvial Mesohabitat Level and Its Influence on UAV-Based Thermal Imaging Accuracy

Author:

Kuhn Johannes1,Pander Joachim1ORCID,Habersetzer Luis2ORCID,Casas-Mulet Roser3ORCID,Geist Juergen1ORCID

Affiliation:

1. Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany

2. Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), 6047 Kastanienbaum, Switzerland

3. Chair of Hydraulic Engineering, TUM School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany

Abstract

Water surface roughness (SR) is a highly relevant parameter governing data reliability in remote sensing applications, yet lacking appropriate methodology in riverine habitats. In order to assess thermal accuracy linked to SR of thermal imaging derived from an unmanned aerial vehicle (UAV), we developed the SR Measurement Device (SRMD). The SRMD uses the concept of in situ quantification of wave frequency and wave amplitude. Data of nine installed SRMDs in four different fluvial mesohabitat classes presented a range of 0 to 47 waves per 30 s and an amplitude range of 0 to 6 cm. Even subtle differences between mesohabitat classes run, riffle, and no-/low-flow still and pool areas could be detected with the SRMD. However, SR revealed no significant influence on the accuracy of thermal infrared (TIR) imagery data in our study case. Overall, the presented device expands existing methods of riverine habitat assessments and has the potential to produce highly relevant data of SR for various ecological and technical applications, ranging from remote sensing of surface water and habitat quality characterizations to bank stability and erosion risk assessments.

Funder

Alexander von Humboldt Foundation

HIT-Umweltstiftung

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3