High-Speed Spatial–Temporal Saliency Model: A Novel Detection Method for Infrared Small Moving Targets Based on a Vectorized Guided Filter

Author:

Aliha Aersi123ORCID,Liu Yuhan12ORCID,Zhou Guangyao12,Hu Yuxin123

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Infrared (IR) imaging-based detection systems are of vital significance in the domains of early warning and security, necessitating a high level of precision and efficiency in infrared small moving target detection. IR targets often appear dim and small relative to the background and are easily buried by noise and difficult to detect. A novel high-speed spatial–temporal saliency model (HS-STSM) based on a guided filter (GF) is proposed, which innovatively introduces GF into IR target detection to extract the local anisotropy saliency in the spatial domain, and substantially suppresses the background region as well as the bright clutter false alarms present in the background. Moreover, the proposed model extracts the motion saliency of the target in the temporal domain through vectorization of IR image sequences. Additionally, the proposed model significantly improves the detection efficiency through a vectorized filtering process and effectively suppresses edge components in the background by integrating a prior weight. Experiments conducted on five real infrared image sequences demonstrate the superior performance of the model compared to existing algorithms in terms of the detection rate, noise suppression, real-time processing, and robustness to the background.

Funder

Aerospace Information Research Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3