Crown Structure Metrics to Generalize Aboveground Biomass Estimation Model Using Airborne Laser Scanning Data in National Park of Hainan Tropical Rainforest, China

Author:

Li Chenyun,Yu Zhexiu,Wang Shaojie,Wu Fayun,Wen Kunjian,Qi JianboORCID,Huang HuaguoORCID

Abstract

Forest aboveground biomass (AGB) is an important indicator for characterizing forest ecosystem structures and functions. Therefore, how to effectively investigate forest AGB is a vital mission. Airborne laser scanning (ALS) has been demonstrated as an effective way to support investigation and operational applications among a wide range of applications in the forest inventory. Moreover, three-dimensional structure information relating to AGB can be acquired by airborne laser scanning. Many studies estimated AGB from variables that were extracted from point cloud data, but few of them took full advantage of variables related to tree crowns to estimate the AGB. In this study, the main objective was to evaluate and compare the capabilities of different metrics derived from point clouds obtained from ALS. Particularly, individual tree-based alpha-shape, along with other traditional and commonly used plot-level height and intensity metrics, have been used from airborne laser scanning data. We took the random forest and multiple stepwise linear regression to estimate the AGB. By comparing AGB estimates with field measurements, our results showed that the best approach is mixed metrics, and the best estimation model is random forest (R2 = 0.713, RMSE = 21.064 t/ha, MAE = 15.445 t/ha), which indicates that alpha-shape may be a good alternative method to improve AGB estimation accuracy. This method provides an effective solution for estimating aboveground biomass from airborne laser scanning.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3