An InSAR Interferogram Filtering Method Based on Multi-Level Feature Fusion CNN

Author:

Yang Wang,He Yi,Yao ShengORCID,Zhang Lifeng,Cao Shengpeng,Wen Zhiqing

Abstract

Interferogram filtering is an essential step in processing data from interferometric synthetic aperture radar (InSAR), which greatly improves the accuracy of terrain reconstruction and deformation monitoring. Most traditional interferogram filtering methods achieve noise suppression and detail preservation through morphological estimation based on the statistical properties of the interferogram in the spatial or frequency domain. However, as the interferogram’s spatial distribution is diverse and complex, traditional filtering methods struggle to adapt to different distribution and noise conditions and cannot handle detail preservation and noise suppression simultaneously. The study proposes a convolutional neural network (CNN)-based multi-level feature fusion model for interferogram filtering that differs from the traditional feedforward neural network (FNN). Adopting a multi-depth multi-path convolution strategy, the method preserves phase details and suppresses noise during interferogram filtering. In filtering experiments based on simulated data, qualitative and quantitative evaluations were used to validate the performance and generalization capabilities of the proposed method. The method’s applicability was evaluated by visual observation during filtering and unwrapping experiments on real data, and the time-series deformation acquired by time series (TS)-InSAR technique is used to evaluate the effect of interferogram filters on deformation monitoring accuracy. Compared to commonly used interferogram filtering methods, the proposed method has significant advantages in terms of performance and efficiency. The study findings suggest new directions for research on high-precision InSAR data processing and provide technical support for practical applications of InSAR.

Funder

YiHe

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3