A Method for Specifying Complete Signature Randomization and an Algebraic Algorithm Based on It

Author:

Moldovyan Alexandr1ORCID,Moldovyan Dmitriy1ORCID,Moldovyan Nikolay1ORCID,Kurysheva Alyona1

Affiliation:

1. St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), 39, 14th Line V.O., 199178 St. Petersburg, Russia

Abstract

To eliminate the limitations of signature randomization in known algebraic algorithms with a hidden group, the security of which is based on the computational complexity of solving large systems of power equations, a method for ensuring complete randomization is proposed. Based on this method, a new algorithm of the indicated type was developed, using a four-dimensional finite non-commutative associative algebra as an algebraic basis. We obtained estimates of the security of algorithms to direct attacks as well as from attacks based on known signatures, which confirm the effectiveness of the proposed signature randomization method. Due to the relatively small size and signature of the public and private keys, the developed algorithm is of interest as a potential practical post-quantum digital signature scheme.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3