Affiliation:
1. Key Laboratory of Data Science and Smart Education Ministry of Education, Hainan Normal University, Haikou 570203, China
2. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
Abstract
Real-time monitoring and timely warning of air quality are vital components of building livable cities and implementing the “Healthy China” strategy. Real-time, efficient, and accurate detection of air quality anomalies holds great significance. However, almost all existing methods for air quality anomaly detection often overlook the imbalanced distribution of data. In addition, many traditional methods cannot learn both pointwise representation and pairwise association, so they cannot solve complex features. This study proposes an anomaly detection method for air quality monitoring based on Deep Smooth Random Sampling and Association Attention in Transformer (DSRS-AAT). Firstly, based on the third geographical law, the more similar the geographical environment, the closer the geographical target features are. We cluster sites according to the surrounding geographic features to fully explore latent feature associations. Then, we employ Deep Smooth Random Sampling to rebalance the air quality datasets. Meanwhile, the Transformer with association attention considers both prior associations and series associations to distinguish anomaly patterns. Experiments are carried out with real data from 95 monitoring stations in Haikou City, China. Final results demonstrate that the proposed DSRS-AAT improves the effectiveness of anomaly detection and provides interpretability analysis for traceability, owing to a significant improvement with the baselines (OmniAnomaly, THOC, etc.). The proposed method effectively enhances the effectiveness of air quality anomaly detection and provides a reference value for real-time monitoring and early warning of urban air quality.
Funder
Hainan Natural Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献