A Photovoltaic Prediction Model with Integrated Attention Mechanism

Author:

Lei Xiangshu1

Affiliation:

1. Faculty of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Solar energy has become a promising renewable energy source, offering significant opportunities for photovoltaic (PV) systems. Accurate and reliable PV generation forecasts are crucial for efficient grid integration and optimized system planning. However, the complexity of environmental factors, including seasonal and daily patterns, as well as social behaviors and user habits, presents significant challenges. Traditional prediction models often struggle with capturing the complex nonlinear dynamics in multivariate time series, leading to low prediction accuracy. To address this issue, this paper proposes a new PV power prediction method that considers factors such as light, air pressure, wind direction, and social behavior, assigning different weights to them to accurately extract nonlinear feature relationships. The framework integrates long short-term memory (LSTM) and gated recurrent units (GRU) to capture local time features, while bidirectional LSTM (BiLSTM) and an attention mechanism extract global spatiotemporal relationships, effectively capturing key features related to historical output. This improves the accuracy of multi-step predictions. To verify the feasibility of the method for multivariate time series, we conducted experiments using PV power prediction as a scenario and compared the results with LSTM, CNN, BiLSTM, CNN-LSTM and GRU models. The experimental results show that the proposed method outperforms these models, with a mean absolute error (MAE) of 12.133, root mean square error (RMSE) of 14.234, mean absolute percentage error (MAPE) of 2.1%, and a coefficient of determination (R2) of 0.895. These results indicate the effectiveness and potential of the method in PV prediction tasks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3