Computation of Green’s Function in a Strongly Heterogeneous Medium Using the Lippmann–Schwinger Equation: A Generalized Successive Over-Relaxion plus Preconditioning Scheme

Author:

Xu Yangyang1,Sun Jianguo1,Shang Yaoda1

Affiliation:

1. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China

Abstract

The computation of Green’s function is a basic and time-consuming task in realizing seismic imaging using integral operators because the function is the kernel of the integral operators and because every image point functions as the source point of Green’s function. If the perturbation theory is used, the problem of the computation of Green’s function can be transformed into one of solving the Lippmann–Schwinger (L–S) equation. However, if the velocity model under consideration has large scale and strong heterogeneity, solving the L–S equation may become difficult because only numerical or successive approximate (iterative) methods can be used in this case. In the literature, one of these methods is the generalized successive over-relaxation (GSOR) iterative method, which can effectively solve the L–S equation and obtain the desired convergent iterative series. However, the GSOR iterative method may encounter slow convergence when calculating the high-frequency Green’s function. In this paper, we propose a new scheme that utilizes the GSOR iterative with a precondition to solve the complex wavenumber L–S equation in a slightly attenuated medium. The complex wavenumber with imaginary components localizes the energy of the background Green’s function and reduces its singularity by enabling exponential decay. Introduction of the preconditioning operator can further improve the convergence speed of the GSOR iterative series. Then, we provide a preconditioned generalized successive over-relaxation (pre-GSOR) iterative format. Our numerical results show that if an appropriate damping factor and a proper preconditioning operator are selected, the method presented here outperforms the GSOR iterative for the real wavenumber L–S equation in terms of the convergence speed, accuracy, and adaptation to high frequencies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference32 articles.

1. High-frequency asymptotic scattering theories and their applications in numerical modeling and imaging of geophysical fields: An overview of the research history and the state-of-the-art, and some new developments;Sun;J. Jilin Univ. (Earth Sci. Ed.),2016

2. Cerveny, V. (2001). Seismic Ray Theory, Cambridge University Press.

3. Bleistein, N. (2012). Mathematical Methods for Wave Phenomena, USA Academic Press.

4. Depth migration by the Gaussian beam summation method;Popov;Geophysics,2010

5. The time-domain depth migration by the summation of delta packets;Shi;Chin. J. Geophys.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3