Solving Dynamic Full-Truckload Vehicle Routing Problem Using an Agent-Based Approach

Author:

Çabuk Selin1,Erol Rızvan1

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, Cukurova University, Sarıcam, 01330 Adana, Turkey

Abstract

In today’s complex and dynamic transportation networks, increasing energy costs and adverse environmental impacts necessitate the efficient transport of goods or raw materials across a network to minimize all related costs through vehicle assignment and routing decisions. Vehicle routing problems under dynamic and stochastic conditions are known to be very challenging in both mathematical modeling and computational complexity. In this study, a special variant of the full-truckload vehicle assignment and routing problem was investigated. First, a detailed analysis of the processes in a liquid transportation logistics firm with a large fleet of tanker trucks was conducted. Then, a new original problem with distinctive features compared with similar studies in the literature was formulated, including pickup/delivery time windows, nodes with different functions (pickup/delivery, washing facilities, and parking), a heterogeneous truck fleet, multiple trips per truck, multiple trailer types, multiple freight types, and setup times between changing freight types. This dynamic optimization problem was solved using an intelligent multi-agent model with agent designs that run on vehicle assignment and routing algorithms. To assess the performance of the proposed approach under varying environmental conditions (e.g., congestion factors and the ratio of orders with multiple trips) and different algorithmic parameter levels (e.g., the latest response time to orders and activating the interchange of trip assignments between vehicles), a detailed scenario analysis was conducted based on a set of designed simulation experiments. The simulation results indicate that the proposed dynamic approach is capable of providing good and efficient solutions in response to dynamic conditions. Furthermore, using longer latest response times and activating the interchange mechanism have significant positive impacts on the relevant costs, profitability, ratios of loaded trips over the total distance traveled, and the acceptance ratios of customer orders.

Funder

Scientific Projects Unit of Cukurova University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3