Similarity-Based Three-Way Clustering by Using Dimensionality Reduction

Author:

Li Anlong1,Meng Yiping2,Wang Pingxin2

Affiliation:

1. School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

Three-way clustering uses core region and fringe region to describe a cluster, which divide the dataset into three parts. The division helps identify the central core and outer sparse regions of a cluster. One of the main challenges in three-way clustering is the meaningful construction of the two sets. Aimed at handling high-dimensional data and improving the stability of clustering, this paper proposes a novel three-way clustering method. The proposed method uses dimensionality reduction techniques to reduce data dimensions and eliminate noise. Based on the reduced dataset, random sampling and feature extraction are performed multiple times to introduce randomness and diversity, enhancing the algorithm’s robustness. Ensemble strategies are applied on these subsets, and the k-means algorithm is utilized to obtain multiple clustering results. Based on these results, we obtain co-association frequency between different samples and fused clustering result using the single-linkage method of hierarchical clustering. In order to describe the core region and fringe region of each cluster, the similar class of each sample is defined by co-association frequency. The lower and upper approximations of each cluster are obtained based on similar class. The samples in the lower approximation of each cluster belong to the core region of the cluster. The differences between lower and upper approximations of each cluster are defined as fringe region. Therefore, a three-way explanation of each cluster is naturally formed. By employing various UC Irvine Machine Learning Repository (UCI) datasets and comparing different clustering metrics such as Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and Accuracy (ACC), the experimental results show that the proposed strategy is effective in improving the structure of clustering results.

Funder

National Natural Science Foundation of China

Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province

Publisher

MDPI AG

Reference65 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EFection: Effectiveness Detection Technique for Clustering Cloud Workload Traces;International Journal of Computational Intelligence Systems;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3