Mental-Health: An NLP-Based System for Detecting Depression Levels through User Comments on Twitter (X)

Author:

Salas-Zárate Rafael12,Alor-Hernández Giner2ORCID,Paredes-Valverde Mario Andrés3ORCID,Salas-Zárate María del Pilar3ORCID,Bustos-López Maritza2,Sánchez-Cervantes José Luis2

Affiliation:

1. Tecnológico Nacional de México/I. T. Zitácuaro, Av. Tecnológico No. 186, Zitácuaro 61534, Michoacán, Mexico

2. Tecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9 No. 852, Col. E. Zapata, Orizaba 94320, Veracruz, Mexico

3. Tecnológico Nacional de México/I.T.S. Teziutlán, Fracción I y II S/N, Aire Libre, Teziutlán 73960, Puebla, Mexico

Abstract

The early detection of depression in a person is of great help to medical specialists since it allows for better treatment of the condition. Social networks are a promising data source for identifying individuals who are at risk for this mental disease, facilitating timely intervention and thereby improving public health. In this frame of reference, we propose an NLP-based system called Mental-Health for detecting users’ depression levels through comments on X. Mental-Health is supported by a model comprising four stages: data extraction, preprocessing, emotion detection, and depression diagnosis. Using a natural language processing tool, the system correlates emotions detected in users’ posts on X with the symptoms of depression and provides specialists with the depression levels of the patients. By using Mental-Health, we described a case study involving real patients, and the evaluation process was carried out by comparing the results obtained using Mental-Health with those obtained through the application of the PHQ-9 questionnaire. The system identifies moderately severe and moderate depression levels with good precision and recall, allowing us to infer the model’s good performance and confirm that it is a promising option for mental health support.

Publisher

MDPI AG

Reference63 articles.

1. World Health Organization (2022, September 19). Mental Disorders. Available online: https://www.who.int/es/news-room/fact-sheets/detail/mental-disorders.

2. Informativa, H. (2018, January 30). Salud Mental En Adultos, INCyTU. 2018; Volume 52, pp. 1–4. Available online: https://www.foroconsultivo.org.mx/INCyTU/documentos/Completa/INCYTU_18-007.pdf.

3. Emotions in Depression: What Do We Really Know?;Rottenberg;Annu. Rev. Clin. Psychol.,2017

4. Emotion regulation predicts symptoms of depression over five years;Berking;Behav. Res. Ther.,2014

5. Common and specific emotion-related predictors of anxious and depressive symptoms in youth;Suveg;Child Psychiatry Hum. Dev.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3