Deep Learning-Based Intelligent Diagnosis of Lumbar Diseases with Multi-Angle View of Intervertebral Disc

Author:

Chen Kaisi (Kathy)12ORCID,Zheng Lei3,Zhao Honghao1ORCID,Wang Zihang1

Affiliation:

1. Department of Decision Sciences, School of Business, Macau University of Science and Technology, Macao 999078, China

2. Department of Mathematics and Statistics, University of Canterbury, Christchurch 8041, New Zealand

3. Department of Management, School of Business, Macau University of Science and Technology, Macao 999078, China

Abstract

The diagnosis of degenerative lumbar spine disease mainly relies on clinical manifestations and imaging examinations. However, the clinical manifestations are sometimes not obvious, and the diagnosis of medical imaging is usually time-consuming and highly relies on the doctor’s personal experiences. Therefore, a smart diagnostic technology that can assist doctors in manual diagnosis has become particularly urgent. Taking advantage of the development of artificial intelligence, a series of solutions have been proposed for the diagnosis of spinal diseases by using deep learning methods. The proposed methods produce appealing results, but the majority of these approaches are based on sagittal and axial images separately, which limits the capability of different deep learning methods due to the insufficient use of data. In this article, we propose a two-stage classification process that fully utilizes image data. In particular, in the first stage, we used the Mask RCNN model to identify the lumbar spine in the spine image, locate the position of the vertebra and disc, and complete rough classification. In the fine classification stage, a multi-angle view of the intervertebral disc is generated by splicing the sagittal and axial slices of the intervertebral disc up and down based on the key position identified in the first stage, which provides more pieces of information to the deep learning methods for classification. The experimental results reveal substantial performance enhancements with the synthesized multi-angle view, achieving an F1 score of 96.67%. This represents a performance increase of approximately 15% over the sagittal images at 84.48% and nearly 14% over the axial images at 83.15%. This indicates that the proposed paradigm is feasible and more effective in identifying spinal-related degenerative diseases through medical images.

Funder

Macao Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3