A New Alternating Suboptimal Dynamic Programming Algorithm with Applications for Feature Selection

Author:

Podgorelec David1ORCID,Žalik Borut1ORCID,Mongus Domen1ORCID,Vlahek Dino1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, SI-2000 Maribor, Slovenia

Abstract

Feature selection is predominantly used in machine learning tasks, such as classification, regression, and clustering. It selects a subset of features (relevant attributes of data points) from a larger set that contributes as optimally as possible to the informativeness of the model. There are exponentially many subsets of a given set, and thus, the exhaustive search approach is only practical for problems with at most a few dozen features. In the past, there have been attempts to reduce the search space using dynamic programming. However, models that consider similarity in pairs of features alongside the quality of individual features do not provide the required optimal substructure. As a result, algorithms, which we will call suboptimal dynamic programming algorithms, find a solution that may deviate significantly from the optimal one. In this paper, we propose an iterative dynamic programming algorithm, which invertsthe order of feature processing in each iteration. Such an alternating approach allows for improving the optimization function by using the score from the previous iteration to estimate the contribution of unprocessed features. The iterative process is proven to converge and terminates when the solution does not change in three successive iterations or when the number of iterations reaches the threshold. Results in more than 95% of tests align with those of the exhaustive search approach, being competitive and often superior to the reference greedy approach. Validation was carried out by comparing the scores of output feature subsets and examining the accuracy of different classifiers learned on these features across nine real-world applications, considering different scenarios with various numbers of features and samples. In the context of feature selection, the proposed algorithm can be characterized as a robust filter method that can improve machine learning models regardless of dataset size. However, we expect that the idea of alternating suboptimal optimization will soon be generalized to tasks beyond feature selection.

Funder

Slovene Research and Innovation Agency

Publisher

MDPI AG

Reference60 articles.

1. Liu, H., and Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining, Kluwer Academic Publishers.

2. An Introduction to Variable and Feature Selection;Guyon;J. Mach. Learn. Res.,2003

3. Feature selection: A literature Review;Kumar;SmartCR,2014

4. Wrappers for feature subset selection;Kohavi;Artif. Intell.,1997

5. Dynamic programming;Bellman;Princet. Univ. Press,1957

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3