Towards Human-Interactive Controllable Video Captioning with Efficient Modeling

Author:

Heo Yoonseok1ORCID,Kim Taehoon2ORCID,Kim Seunghwan2ORCID,Seo Jungyun2ORCID,Kim Juae3ORCID

Affiliation:

1. Department of Computer Science and Engineering, Sogang University, Seoul 04107, Republic of Korea

2. LG AI Research, Seoul 07796, Republic of Korea

3. Department of English Linguistics and Language Technology, Division of Language & AI, Hankuk University of Foreign Studies, Seoul 02450, Republic of Korea

Abstract

Video captioning is a task of describing the visual scene of a given video in natural language. There have been several lines of research focused on developing large-scale models in a transfer learning paradigm, with major challenge being the tradeoff between scalability and performance in limited environments. To address this problem, we propose a simple yet effective encoder–decoder-based video captioning model integrating transformers and CLIP, both of which are widely adopted in the vision and language domains, together with appropriate temporal feature embedding modules. Taking this proposal a step further, we also address the challenge of human-interactive video captioning, where the captions are tailored to specific information desired by humans. To design a human-interactive environment, we assume that a human offers an object or action in the video as a short prompt; in turn, the system then provides a detailed explanation regarding the prompt. We embed human prompts within an LSTM-based prompt encoder and leverage soft prompting to tune the model effectively. We extensively evaluated our model on benchmark datasets, demonstrating comparable results, particularly on the MSR-VTT dataset, where we achieve state-of-the-art performance with 4% improvement. In addition, we also show potential for human-interactive video captioning through quantitative and qualitative analysis.

Funder

Hankuk University of Foreign Studies Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3