A Range Query Scheme for Spatial Data with Shuffled Differential Privacy

Author:

Li Kaixuan1ORCID,Zhang Hua1,Xu Yanxin1ORCID,Liu Zhenyan1

Affiliation:

1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

The existing high-dimensional or multi-dimensional geographic spatial datasets have a large amount of data. When third-party servers collect and publish them, privacy protection is required to prevent sensitive information from being leaked. Local differential privacy can be used to protect location-sensitive information during range queries. However, the accuracy of a range query based on local differential privacy is affected by the distribution and density of spatial data. Based on this, aiming at the distribution and density characteristics of data, we designed a dpKD tree that supports high-precision range queries with shuffled differential privacy, and designed an algorithm KDRQ for range queries based on shuffled differential privacy. First, we employed the  dpKD to divide the data. Then, we shuffled the data based on SRRQ and reconstructed the tree. Finally, we used the SDRQ algorithm for the response range query. The experimental results show that the query accuracy of the KDRQ algorithm was at least 1–4.5 times higher than that of the existing algorithms RAPPOR, PSDA and GT-R under the same privacy budget.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3