Abstract
The present study investigates the effects of upstream ramps on a backward-injection film cooling over a flat surface. Two ramp structures, referred to as a straight-wedge-shaped ramp (SWR) and sand-dune-shaped ramp (SDR), are considered under a series of blowing ratios ranging from M = 0.5 to M = 1.5. Regarding the backward injection, the key mechanism of upstream ramps on film cooling enhancement is suggested to be the enlargement of the horizontal scale of the separate wake vortices and the reduction of their normal dimension. When compared to the SDR, the SWR modifies the backward coolant injection well, such that a larger volume of coolant is suctioned and concentrated in the near-field region at the film-hole trailing edge. As a consequence, the SWR demonstrates a more pronounced enhancement in film cooling than the SDR in the backward-injection process, which is the opposite of the result for the forward-injection scheme. For the SWR, the backward injection provides a better film cooling effectiveness than the forward injection, regardless of blowing ratios. However, for the SDR, the backward injection could show a superior effect to the forward injection on film cooling enhancement, when the blowing ratio is beyond a critical blowing ratio. In the present SDR situation, the critical blowing ratio is identified to be M = 1.0.
Funder
National Science and Technology Major Project of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献