Abstract
During the use and management of lead–acid batteries, it is very important to carry out prediction and study of the state of the health (SOH) of the battery. To this end, this paper proposes a SOH prediction method for lead–acid batteries based on the CNN-BiLSTM-Attention model. The model utilizes the convolutional neural network (CNN) to carry out feature extraction and data dimension reduction in the input factors of model, and then these factors are used as the input of the bidirectional long short-term memory network (BiLSTM). The BiLSTM is used to learn the temporal correlation information in the local features of input time series bidirectionally. The attention mechanism is introduced to assign more attention to key features in the input sequence with more significant influence on the output result by assigning weights to important features, and finally, multi-step prediction of the battery SOH is realized. Compared with the prediction results of battery SOH using other neural network methods, the method proposed in this study can provide higher prediction accuracy and achieve accurate multi-step prediction of battery SOH. Measured results show that most of the multi-step prediction errors of the proposed method are controlled within 3%.
Funder
Project Supported by National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献