Centralized and Distributed Optimization for Vehicle-to-Grid Applications in Frequency Regulation

Author:

El-Hendawi Mohamed,Wang ZhanleORCID,Liu Xiaoyue

Abstract

This paper proposes centralized and distributed optimization models for V2G applications to provide frequency regulation in power systems and the electricity market. Battery degradation and dynamic EV usages such as EV driving period, driving distance, and multiple charging/discharging locations are modeled. The centralized V2G problem is formulated into the linear programming (LP) model by introducing two sets of slack variables. However, the centralized model encounters limitations such as privacy concerns, high complexity, and central failure issues. To overcome these limitations, the distributed optimal V2G model is developed by decomposing the centralized model into subproblems using the augmented Lagrangian relaxation (ALR) method. The alternating direction method of multipliers (ADMM) is used to solve the distributed V2G model iteratively. The proposed models are evaluated using real data from the Independent Electricity System Operator (IESO) Ontario, Canada. Simulation results show that the proposed models can aggregate EVs for frequency regulation; meanwhile, the EV owners can obtain monetary rewards. The simulation also shows that including battery degradation and dynamic EV usage increases the model accuracy. By using the proposed approaches, the high cost and the low efficiency power generation units for frequency regulation can be compensated or partially replaced by EVs, which will reduce the generation cost and greenhouse gas emissions.

Funder

Mitacs

University of Regina

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3