Abstract
Upper protective seam mining has been widely applied in China, but the theory of long-distance multiple upper protective seam mining is not yet perfect. In order to investigate the overburden stress evolution law of repetitive mining of long-distance coal seam groups, an experimental study was conducted to simulate similar materials under repeated mining conditions in the long-distance double upper protective layer in the background of Pingmei Group 8th coal mine. By analyzing the roof-collapse structure and the stress evolution law of different layers of the floor during the superposition mining, the pressure-relief range of the protective layer after the mining of the double upper protective layer was determined. The study results showed that: the pressure relief of the protective layer in the long-distance upper protective layer mining was a dynamic process. After the mining of Group D coal seam, the maximum impact depth of the bottom plate could reach 182 m, and the pressure-relief angle of the upper side of Group E coal seam was 65°, and the pressure-relief angle of the lower side was 75°. The distance behind the vertical projection of the working face of Group D was 42 m. The overlapping back mining would affect the stress distribution of Group F coal seam. The pressure-relief angle of the upper side of Group F coal seam was 88°, and the pressure-relief angle of the lower side was greater than 78°. The distance behind the vertical projection of the working face of Group E was less than 61 m. The superposition and staggered mining of double protective layers could expand the protective layer. Through the verification of the measurement of gas parameters on site, it can be seen from the results that it has a certain protection effect. The research results can enrich the theory of long-distance multiple upper protective layer mining, and provide theoretical guidance for long-distance Coal Seam Group Mining in Pingmei coal-mine area.
Funder
National Natural Science Foundation of China
Project supported by discipline innovation team of Liaoning Technical University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献