Simulative Study to Reduce DC-Link Capacitor of Drive Train for Electric Vehicles

Author:

Butt Osama MajeedORCID,Butt Tallal Majeed,Ashfaq Muhammad Husnain,Talha MuhammadORCID,Raihan Siti Rohani SheikhORCID,Hussain Muhammad MajidORCID

Abstract

E-mobility is an emerging means of transportation, mainly due to the environmental impact of petroleum-based fuel vehicles and oil prices’ peak. However, electric vehicles face several challenges by the nature of technology. Consequently, electric vehicles have a limited travel range and are extremely heavy. In this research, an investigation is carried out on different measures to reduce the DC-link capacitor size in the drive train of an electric vehicle. The investigation is based on software simulations. The DC-link capacitor must be dimensioned with regards to relevant points of operation, which are defined by the rotation speed and torque of the motor as well as the available DC-link voltage. This also includes the field-oriented control (FOC). In order to optimally operate a three-phase inverter in the electric drive train, a suitable type and sizing of the capacitor was studied based on mathematical equations and simulations. Two measures were examined in this study: firstly, an auxiliary passive notch filter introduced in the electric drive train circuit is explored. Based on this measure, an advanced modulation scheme exploiting the control of individual currents within segmented windings of the PMSM is investigated in detail. It was seen that saw-tooth carrier modulation used in the parallel three-phase inverter is found to reduce DC-link capacitor size in the electric drive train circuit by 70%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference27 articles.

1. Global Warming Fact: More Than Half of All Industrial CO2 Pollution Has Been Emitted Since. 1988;Frumhoff;Union Concerned Sci.,2014

2. The resilience of the Paris Agreement: Negotiating and implementing the climate regime;Leal-Arcas;Geo. Envtl. L. Rev.,2018

3. Annual European Union Greenhouse Gas Inventory 1990–2011 and Inventory Report 2013;Pendolovska,2013

4. A comprehensive review on hybrid electric vehicles: architectures and components

5. Who will buy electric vehicles? Identifying early adopters in Germany

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3