Multiobjective Optimization Based Framework for Early Stage Design of Modular Multilevel Converter for All-Electric Ship Application

Author:

Toshon Tanvir Ahmed,Faruque M. O.ORCID

Abstract

The Medium Voltage DC (MVDC) architecture for All Electric Ships (AES) has the potential to provide superior features compared to traditional 60-HZ AC distribution systems in terms of power density, power quality, and system stability. The MVDC system introduces extensive use of power electronics equipment into the shipboard power system (SPS) design that brings complexity to the system design. These power electronics equipment connect the power sources and load centers to the MVDC bus and play a major role in handling system faults. This paper focuses on developing a framework to determine the volume and failure rate of a Modular Multilevel Converter (MMC) for early stage ship design. Two different methodologies (Taguchi method and a genetic algorithm) were used to determine the best design from a robust set of design options. Once the design parameters have been identified, the Taguchi method forms orthogonal array to explore and evaluate designs. At the end of the design cycle, it identifies the best parameters from a large set of design parameters to achieve lower volume and failure rate. These parameters are used as input to the optimization process. This helps to narrow out the number of inputs for optimization algorithm. The Nondominated Sorting Genetic Algorithm II (NSGA-II) has been integrated with converter design tool to minimize the volume and failure rate of MMC. The results show that the optimization algorithm coupled with Taguchi Method provides the lowest volume and failure rate for MMC. One of the goals of early-stage ship design is to develop preliminary design and evaluation of trade space to narrow it down. This paper is expected to aid early-stage ship design of power electronics converter design for MVDC systems in SPS.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

1. A Collaborative Early-Stage Ship Design Environment;Chalfant,2012

2. PWM converter power density barriers;Kolar;Proceedings of the 2007 Power Conversion Conference,2007

3. Design Considerations for a Reference MVDC Power System;Amy,2016

4. IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships

5. Estimation of Power Density of Modular Multilevel Converter Employing Set Based Design (Order No.10604281). Available from Dissertations & Theses @ Florida State University—FCLA; ProQuest Dissertations & Theses Global. (1985663992) https://login.proxy.lib.fsu.edu/login?url=https://search.proquest.com/docview/1985663992?accountid=4840

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3