Author:
Gou Ruixin,He Guiping,Yu Bo,Xiao Yanli,Luo Zhiwei,Xie Yulei
Abstract
The water–energy nexus has become a key factor in the implementation of low-carbon green development, which has led to the need for exploring effective management within the coupled integrated system with multi-energy flow supplies. In this study, the coupled relationship between water resources and energy in the integrated energy system was systematically analyzed, and a system operation optimization model was proposed through comprehensively considering cold, heat and electricity load, and nine kinds of energy conversion and supply equipment/technology from the perspective of a water resources and energy nexus in a typical industry park. The system operation scheme, energy supply mode, net benefit and water resource consumption under different water resource control scenarios were obtained. The results show that water resource control would directly bring about a directly positive influence on renewable energy utilization and energy storage reduction, and that a system’s external dependence and benefits, renewable energy utilization potential and other factors in an integrated energy system should be comprehensively considered. The development of more effective control indicators could be better to promote the effectiveness of bidirectional regulation in a water–energy nexus.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献