Corrosion of Metal Alloys in Potassium Acetate Solutions for Liquid Desiccant Dehumidification and Air Conditioning

Author:

Rippy Kerry C.,Volk Emily,Beers ReaganORCID,Kozubal EricORCID,Gauderman Kristin,Vidal Judith

Abstract

For commercial buildings, liquid desiccant air conditioners (LDACs) could provide up to 80% energy savings compared to high-efficiency vapor compression AC, but commonly utilized liquid desiccants are highly corrosive. This precludes the use of metallic components, necessitating specialized plastics and thereby driving up cost, weight, and limiting operational temperature and pressure ranges. Less corrosive alternatives are sought. Here, potassium acetate solutions are investigated as less-corrosive alternatives to the chloride salt solutions that are typically used in LDAC systems. Corrosion evaluations for a Cu alloy (C12200) and two Al alloys (Al3003 and Al1100) in both potassium acetate and chloride salt solutions are presented. We show that yearly corrosion rates are lower in potassium acetate solutions by up to three orders of magnitude. Active corrosion behavior is largely absent in potassium acetate solutions but is present in chloride salt solutions. Furthermore, solid corrosion products are observed in chloride salt solutions. Thus, we conclude that potassium acetate is a promising candidate as a less corrosive alternative liquid desiccant for LDAC systems with metallic components.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. Addressing energy storage needs at lower cost via on-site thermal energy storage in buildings

2. The Future of Cooling;International Energy Agency,2018

3. Advanced Commercial Liquid-Desiccant Technology Development Study,1998

4. Combining liquid desiccant dehumidification with a dew-point evaporative cooler: A design analysis;Woods;HVAC&R Res.,2013

5. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3